Association between provider recommendation and influenza vaccination status among children

Katherine E. Kahn, MPH ${ }^{\text {a,b }}$, Tammy A. Santibanez, PhD ${ }^{\text {b }}$, Yusheng Zhai, MSPH ${ }^{\text {a,b }}$, and Carolyn B. Bridges, MD ${ }^{\text {b }}$
${ }^{\text {a Leidos, Inc., Atlanta, Georgia, USA }}$
${ }^{\mathrm{b}}$ Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Abstract

Background-Provider recommendation is associated with influenza vaccination receipt. The objectives of this study were to estimate the percentage of children 6 months- 17 years for whom a provider recommendation for influenza vaccination was received, identify factors associated with receipt of provider recommendation, and evaluate the association between provider recommendation and influenza vaccination status among children.

Methods-National Immunization Survey-Flu (NIS-Flu) parentally reported data for the 201314, 2014-15, and 2015-16 seasons were analyzed. Tests of association between provider recommendation and demographic characteristics were conducted using Wald chi-square tests and pairwise comparison t-tests. Multivariable logistic regression was used to determine variables independently associated with receiving provider recommendation and the association between provider recommendation and influenza vaccination status.

Results—Approximately 70\% of children had a parent report receiving a provider recommendation for influenza vaccination for their child. The strongest association between receipt of provider recommendation and demographic characteristics was with child's age, with younger children (6-23 months, 2-4 years, and 5-12 years) being more likely to have a provider recommendation than older children (13-17 years). In addition, children living in a household above poverty with household income $>\$ 75,000$ were more likely to have a parent report receipt of a provider recommendation than children living below poverty. Children with a provider recommendation were twice as likely to be vaccinated than those without.

[^0]Conclusions—This study affirms the importance of provider recommendation for influenza vaccination among children. Ensuring that parents of all children receive a provider recommendation may improve vaccination coverage.

Keywords

Child; Immunization; Influenza,human; Surveys and questionnaires; Vaccination; Vaccination coverage

Introduction

Influenza causes significant morbidity and mortality among children.[1;2] Vaccination is an effective strategy in preventing influenza and has been recommended by the Advisory Committee on Immunization Practices (ACIP) for all children 6 months and older since 2008.[3;4] Despite this well-established recommendation, only 59.3% of children 6 months17 years were vaccinated during the 2015-16 influenza season, which is considerably lower than the Healthy People 2020 target of 70% influenza vaccination coverage.[5;6]

The ACIP has noted the critical role of a provider recommendation for influenza vaccination and has highlighted several studies that document the positive association between a provider recommendation and receipt of influenza vaccination in a variety of populations, including adults 50-64 years, high-risk adults, Medicare beneficiaries, young children 6-23 months, and children with asthma.[7-13] Numerous studies have shown that pregnant women who received a provider recommendation for influenza vaccination were much more likely to be vaccinated than those who did not.[14-23] Studies among hospitalized children and underserved adults also identified provider recommendation as an important factor associated with influenza vaccination.[24;25] A recent study on the general population of adults reported that adults who received a provider recommendation were 1.72 times more likely to be vaccinated than those who did not, but less than half of adults had received a provider recommendation.[26] To our knowledge, there are no published studies on provider recommendation of influenza vaccination that focus on all children 6 months- -17 years, regardless of health conditions, using a national sample.

The objectives of this study were to: 1) quantify the proportion of children 6 months- 17 years for whom a provider recommendation for influenza vaccination was received at the state and national levels by sociodemographic characteristics, 2) identify factors associated with parental receipt of a provider recommendation for their child's influenza vaccination, and 3) determine whether parental receipt of a provider recommendation is independently associated with influenza vaccination status among children 6 months -17 years.

Methods

Data from the National Immunization Survey-Flu (NIS-Flu) from the 2013-14, 2014-15, and 2015-16 influenza seasons were analyzed to assess parental receipt of a provider recommendation for influenza vaccination for the child and influenza vaccination coverage by receipt of a provider recommendation during the three seasons.[27;28] The NIS-Flu is an ongoing, national list-assisted random-digit-dialed dual frame landline and cellular
telephone survey of households with children. It includes three components: the NIS-Child
for children 19-35 months, the NIS-Teen for adolescents 13-17 years, and the NIS Child Influenza Module for children 6-18 months and 3-12 years identified during the screening of households for the NIS-Child and NIS-Teen.[27-33] Telephone interviews were conducted with parents or guardians during October through June for the three seasons from all 50 states and the District of Columbia. The NIS-Flu survey questionnaire was available in English and Spanish, and Language Line Services was used for real-time translation into many other languages.[34] The Council of American Survey and Research Organizations (CASRO) response rates ranged from $53.5 \%-64.8 \%$ for landline and $29.9 \%-38.8 \%$ for cellular telephones.[5;35-37]

The study sample included children in the NIS-Flu who had at least one visit to a doctor or other health professional since July $1^{\text {st }}$ during the influenza season of the interview and had information about whether a provider recommendation for influenza was received. Survey questions about provider recommendation were only asked during the April-June interview months. Survey respondents were asked, 'Since July $1^{\text {st }}$, has [sample child] had a visit to a doctor or other health professional about his or her health?'; children were excluded if the respondent answered 'No', 'Don't Know', or if they refused to answer $(26.4 \%, 24.6 \%$, and 24.3% for the 2013-14, 2014-15, and 2015-16 seasons, respectively). Respondents who answered 'Yes' were asked, 'Since July $1^{\text {st }}$, did a doctor or other health professional tell you they recommend or say it was a good idea for [sample child] to get a flu vaccination?'; children were excluded if the respondent answered 'Don't Know' or refused to answer $(5.2 \%, 5.9 \%$, and 5.9% for the $2013-14,2014-15$, and 2015-16 seasons, respectively). Respondents were also asked if their child had received an influenza vaccination since July $1^{\text {st }}$ and, if so, during which month and year. Information on child, maternal, and household sociodemographic characteristics were also collected during the interviews.

State level and national influenza vaccination coverage estimates and methods were published previously for children 6 months and older and were calculated for this study using the same methodology for children who met the inclusion criteria described previously.[5;35;36] Tests of association between receipt of a provider recommendation for influenza vaccination and demographic variables were conducted using Wald chi-square tests followed by pair-wise comparison t-tests. Multivariable logistic regression was used to determine 1) variables independently associated with receipt of a provider recommendation, and 2) whether receipt of a provider recommendation was independently associated with receipt of an influenza vaccination. Independent variables in the models included the following: child's age, sex, and race/ethnicity, language of the survey, mother's education, poverty/annual household income, number of children in the household, urban/rural residence, and region of residence. Adjusted prevalence ratios (APR) and adjusted prevalences (AP) based on predicted marginals from the logistic regression models are reported. In addition, population attributable risk (PAR) was calculated using the prevalence of provider recommendation receipt and the prevalence ratio of influenza vaccination by provider recommendation receipt to assess the potential contribution of provider recommendation to the observed influenza vaccination level.

A two-sided significance level of 0.05 was adopted for all statistical tests. Reported percentages and corresponding 95% confidence intervals ($95 \% \mathrm{CI}$) were weighted, while reported sample sizes were unweighted. All analyses were weighted to population totals and to adjust for households having multiple telephone lines, unit non-response, and noncoverage of non-telephone households. Analyses were conducted using SAS (version 9.3) and SUDAAN (version 11.0.0) statistical software to account for the complex design. Institutional review board (IRB) approval for conducting the NIS was obtained through the National Center for Health Statistics Research Ethics Review Board and the IRB of NORC at the University of Chicago.[38]

Results

There were $24,515,26,825$, and 25,261 children who had a provider visit and were included in the study for the 2013-14, 2014-15, and 2015-16 seasons, respectively. The characteristics of children included in the study sample are presented in Table 1. In addition, the characteristics of children who did not have a provider visit and were excluded from the study are also presented.

National and state level estimates for parental receipt of a provider recommendation for influenza vaccination among children are shown in Table 2 and Figure 1. During the 201516 season, 70.3% of children had a parent or guardian who reported receiving a provider recommendation for influenza vaccination of their child. Influenza vaccination coverage among children for whom a provider recommendation was received was 72.2%, compared with 32.1% among children for whom a provider recommendation was not received, resulting in a PAR estimate of 46.8%. At the state level during the 2015-16 season, the proportion of children for whom a provider recommendation was received ranged from 49.6% (Wyoming) to 83.7% (District of Columbia). In each state, vaccination coverage was higher among children with a provider recommendation compared with those without a provider recommendation. The PAR ranged from 16.7% (Maryland) to 70.7% (Montana). Overall, the proportion of children for whom a provider recommendation was received was similar during each season included in the study period. Comparing 2013-14 and 2015-16, the proportion of children with a provider recommendation increased in the District of Columbia and Texas and decreased in Kansas, Mississippi, and Wyoming (Table 2).

In bivariate analysis, child's age, number of children in the household, and region of residence were all found to be associated with parental receipt of a provider recommendation across all three seasons studied, whereas child's gender and race/ethnicity were not associated with receipt of a provider recommendation (Table 3). Compared with younger children, those 13-17 years were less likely to have a parent report receiving a provider recommendation. During the 2015-16 season, the proportion of children with a provider recommendation decreased with increasing age of the child $(80.0 \%, 75.8 \%, 72.2 \%$, and 61.6% among children 6-23 months, 2-4 years, 5-12 years and 13-17 years, respectively). Children living in a household with 2-3 children compared with those with only 1 child and children living in the Northeast compared with those living in the Midwest and the South were consistently more likely to have a parent report receiving a provider recommendation. Comparing 2013-14 and 2015-16, only one difference was noted: an
increase in the proportion of children living in urban areas whose parent reported receiving a provider recommendation (68.4% versus 73.9%). Across all seasons and groups studied, vaccination coverage was higher among children for whom a provider recommendation was received. During the $2015-16$ season, the PAR among all groups ranged from 23.7% for children whose parent completed the survey in Spanish to 61.1% for children who lived in households with 4 or more children. Additional estimates of parental receipt of a provider recommendation by sociodemographic characteristics are presented in Table 3.

The results of the multivariable analysis to determine factors associated with parental receipt of a provider recommendation for influenza vaccination for the child were generally consistent with the bivariate analysis (Table 4). The strongest association observed across the 2013-14, 2014-15, and 2015-16 seasons was between parental receipt of a provider recommendation and child's age, with children 6-23 months (APR 1.37, 1.28, and 1.31, respectively), 2-4 years (APR 1.37, 1.22, and 1.23, respectively), and 5-12 years (APR 1.24, 1.13, and 1.17 , respectively) being more likely to have a parent report receipt of a provider recommendation than children 13-17 years. In addition, throughout the study, children living above poverty and with an annual household income greater than $\$ 75,000$ were more likely to have a parent report receipt of a provider recommendation than children living below poverty (APR 1.19, 1.09, and 1.06, respectively). All results from the model are presented in Table 4, including APRs and APs.

The results of the multivariable analysis to determine whether parental receipt of a provider recommendation for influenza vaccination for the child was independently associated with the child's influenza vaccination status are presented in Table 5. Across all three seasons studied, children for whom a parent reported receipt of a provider recommendation were approximately twice as likely to be vaccinated compared with children whose parent did not report receiving a provider recommendation, even after controlling for the other demographic characteristics in the model (APR 1.80, 1.91, and 2.12 for the 2013-14, 201415 , and 2015-16 seasons, respectively).

Discussion

We found that, across all seasons studied, approximately 70% of children 6 months-17 years had a parent report receipt of a provider recommendation for influenza vaccination for their child. While this proportion may seem relatively high, it still indicates a significant number of children for whom a provider recommendation was not received, or if it was, the recommendation may not have been strong enough or adequately understood by the child's parent. This is the first study, to our knowledge, that uses a national sample to estimate the proportion of all children, regardless of age or health conditions, for whom a provider recommendation for influenza vaccination was received and to estimate influenza vaccination coverage among this population by receipt of a provider recommendation. Studies conducted among other populations varied. For example, Gnanasekaran et al. reported that only 55% of parents of children 5-18 years with asthma in Massachusetts reported that their child's doctor had recommended the influenza vaccine during the 200304 season, but this was before the ACIP recommended annual influenza vaccination for all children in 2008.[3;9] Benedict et al. found that only 43.5% of adults in the general U.S.
population received a provider recommendation for influenza vaccination during the 2011-
12 season, although this study took place fairly soon after the ACIP established a universal recommendation that included all adults regardless of age or health conditions.[8;26] According to reports by the CDC, based on Internet panel surveys, receipt of a provider recommendation among pregnant women increased from 62.9% during the $2011-12$ season to 80.1% during the $2015-16$ season.[15;17;20-22]

For all three seasons, influenza vaccination coverage was significantly higher among children for whom a provider recommendation was received than among children for whom a provider recommendation was not received. Our estimate that approximately 47% of vaccination coverage among children could be attributed to parental receipt of a provider recommendation during the 2015-16 season, highlights the critical importance of a provider recommendation for children. Our findings are consistent with several studies among pregnant women.[14-17;23] For example, CDC reported that pregnant women who received a provider recommendation or offer of seasonal influenza vaccination were much more likely to be vaccinated (62.1\%) than those who did not (14.3\%) during the 2009-10 season and the proportion of seasonal vaccination coverage estimated to be attributed to provider offer or recommendation was even higher (74\%).[16] In addition, Gnanasekaran et al. reported 70% vaccination coverage among children with asthma whose physician recommended influenza vaccination versus 38% among those without a recommendation, and Winston et al. reported 83.7% vaccination coverage among Medicare beneficiaries who reported receiving a provider recommendation compared with 55.8% who did not.[9;13] Likewise, a study on children 6-23 months, following the 2002-03 season, reported that 90.6% of parents who had a vaccinated child believed that their child's doctor thought the child should have a flu shot compared with 31.6% of parents who had an unvaccinated child. [11]

In our study, child's age had the strongest association with parental receipt of a provider recommendation for influenza vaccination of the child across all three seasons. It is possible that providers are more likely to strongly recommend influenza vaccination for children younger than 5 years, and especially those younger than 2 years, because they are at higher risk of serious adverse complications from influenza infection.[39-42] Children less than 2 years are also receiving a number of routine vaccinations, and it would presumably be convenient for providers to recommend and administer influenza vaccine at the same time as other vaccines are given. In fact, a study in Seattle found that parents of young children were more likely to accept the influenza vaccine when recommended along with other routine vaccines.[43] Young children tend to have more encounters with their provider and, thus, have more opportunities to receive a provider recommendation for influenza vaccination. Pediatricians and family physicians have reported the following as primary barriers to adolescent immunization: adolescents rarely make preventive health visits, adolescents are not aware of the need for immunizations, and adolescents and/or parents underestimate the risk of vaccine-preventable diseases.[44] All of the adolescents included in our study had visited a provider, but the type of visit was not assessed. If the visit was not a preventive health visit (e.g., sick visit or sports physical) it is possible that a provider might not routinely recommend an influenza vaccination at such a visit. It is important for providers to take advantage of every patient encounter to recommend and, if possible, offer influenza

Vaccine. Author manuscript; available in PMC 2019 June 07.
vaccination. Providers should refer to The Guide to Community Preventive Services, which provides guidance on effective interventions for increasing vaccination rates.[45]

We also found that children living in households with higher incomes $(>\$ 75,000)$ were more likely to have a parent report receipt of a provider recommendation for influenza vaccination for their child than those living at or below poverty. It is possible that parents of low income children struggle to get their child to a preventive care visit and may be more likely to bring their child to the doctor when the child is sick, at which time the parent may not receive a recommendation for influenza vaccination. It also is possible that providers who serve a higher proportion of low income children may be less likely to recommend or offer influenza vaccination. This could be due to a variety of reasons that may disproportionately affect the practices of these providers such as the anticipated cost or burden of offering influenza vaccination, storage capacity, provider beliefs about influenza vaccination, and anticipated patient beliefs about influenza vaccination. However, the Vaccines for Children (VFC) program, which provides vaccines at no cost to children who are uninsured, underinsured, Medicaid-eligible, or American Indian or Alaska Native, should reduce financial barriers to vaccination.[46] Further studies are needed to address socioeconomic differences in receipt of a provider recommendation for influenza vaccination and identify strategies to ensure all children have access to influenza vaccination services.

We found that a provider recommendation for influenza vaccination was strongly associated with vaccination status among children. Across all seasons studied, children who had a parent report receipt of a provider recommendation were approximately two times more likely to be vaccinated than children without a recommendation, even when controlling for demographic characteristics.. This reinforces the importance of a provider recommendation for influenza vaccination among children. Other studies involving different groups of children reported that a provider recommendation was the most important factor related to vaccination status.[9;11]

The findings of this study are subject to several limitations. First, receipt of a provider recommendation for influenza vaccination for the child and influenza vaccination status of the child were based on parental report and subject to whether parents recognized statements by providers as a recommendation. In addition, we did not know about the type of provider visit the child had, which may not have been a preventive care visit, or whether the child had multiple visits and, therefore, more opportunities to receive a provider recommendation. Furthermore, the timing of the visit was unknown and the questions about provider recommendation were only asked during April-June, potentially several months after a provider recommendation or vaccination might have occurred. Therefore, the results are subject to respondent recall bias. In addition, the NIS-Flu is a telephone survey that excludes households with no telephone service. Finally, the CASRO response rate was low, especially for the cellular telephone sample. Non-coverage and non-response bias may remain even after weighting adjustments designed to reduce these types of bias.

Conclusions

The results of this study highlight the strong relationship between a provider recommendation and influenza vaccination among children and identify groups of children for whom improvements in provider recommendations are needed, notably older children and children living below poverty. Policy makers and healthcare providers and healthcare systems should consider potential access barriers and mitigation strategies to improve the proportion of children whose parents receive an influenza vaccination recommendation from their child's provider.

Acknowledgments

Funding:This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Abbreviations:
ACIP
Advisory Committee on Immunization Practices
NIS-Flu National Immunization Survey-Flu
NIS-Child National Immunization Survey-Child
NIS-Teen National Immunization Survey-Teen
CASRO Council of American Survey and Research Organizations
APR Adjusted Prevalence Ratio
AP
Adjusted Prevalence
PAR Population Attributable Risk
CI Confidence Interval
MSA
Metropolitan Statistical Area

References

[1]. Fowlkes A, Steffens A, Temte J, et al. Incidence of medically attended influenza during pandemic and postpandemic seasons through the Influenza Incidence Surveillance Project, 2009-13. Lancet Respir Med 2015;3:709-18. [PubMed: 26300111]
[2]. Wong KK, Jain S, Blanton L, et al. Influenza-associated pediatric deaths in the United States, 2004-2012. Pediatrics 2013;132(5):796-804. [PubMed: 24167165]
[3]. CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2008. MMWR 2008;57(RR07):1-60.
[4]. Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and control of seasonal influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2016-17 influenza season. MMWR 2016;65(5):1-54.
[5]. CDC Flu vaccination coverage, United States, 2015-16 influenza season.. FluVaxView 2016 Available at: https://www.cdc.gov/flu/fluvaxview/coverage-1516estimates.htm [accessed Dec 13, 2017]
[6]. U.S.Department of Health and Human Services. Healthy People 2020. Topics and objectives: Immunization and infectious diseases. ODPHP 2016 Available at: https:// www.healthypeople.gov/2020/topics-objectives/topic/immunization-and-infectious-diseases/ objectives [accessed Oct 27, 2017]
[7]. Ashby-Hughes B, Nickerson N. Provider endorsement: the strongest cue in prompting high-risk adults to receive influenza and pneumococcal immunizations. Clin Excell Nurse Pract 1999;3(2): 97-104. [PubMed: 10646398]
[8]. CDC. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR 2010;59(RR08):1-62.
[9]. Gnanasekaran SK, Finkelstein JA, Hohman K, O’Brien M, Kruskal B, Lieu TA. Parental perspectives on influenza vaccination among children with asthma. Public Health Rep 2006;121(2):181-8. [PubMed: 16528952]
[10]. Nichol KL, MacDonald R, Hauge M. Factors associated with influenza and pneumococcal vaccination behavior among high-risk adults. J Gen Intern Med 1996;11(11):673-7. [PubMed: 9120653]
[11]. Nowalk MP, Zimmerman RK, Lin CJ, et al. Parental perspectives on influenza immunization of children aged 6 to 23 months. Am J Prev Med 2005;29(3):210-4. [PubMed: 16168870]
[12]. Santibanez TA, Mootrey GT, Euler GL, Janssen AP. Behavior and beliefs about influenza vaccine among adults aged 50-64 years. Am J Health Behav 2010;34(1):77-89. [PubMed: 19663755]
[13]. Winston CA, Wortley PM, Lees KA. Factors associated with vaccination of medicare beneficiaries in five U.S. communities: results from the racial and ethnic adult disparities in immunization initiative survey, 2003. J Am Geriatr Soc 2006;54(2):303-10. [PubMed: 16460383]
[14]. Ahluwalia IB, Jamieson DJ, Rasmussen SA, D’Angelo D, Goodman D, Kim H. Correlates of seasonal influenza vaccine coverage among pregnant women in Georgia and Rhode Island. Obstet Gynecol 2010;116(4):949-55. [PubMed: 20859160]
[15]. CDC. Influenza vaccination coverage among pregnant women - 2011-12 influenza season, United States. MMWR 2012;61(38):758-63. [PubMed: 23013721]
[16]. CDC. Influenza vaccination coverage among pregnant women - 29 states and New York City, 2009-10 season. MMWR 2012;61(07):113-8. [PubMed: 22357402]
[17]. CDC. Influenza vaccination coverage among pregnant women - United States, 2012-13 influenza season. MMWR 2013;62(38):787-92. [PubMed: 24067583]
[18]. CDC. Influenza vaccination among pregnant women - Massachusetts, 2009-2010. MMWR 2013;62(43):854-7. [PubMed: 24172879]
[19]. CDC. Seasonal influenza vaccination coverage among women who delivered a live-born infant 21 states and New York City, 2009-10 and 2010-11 influenza seasons. MMWR 2013;62(49): 1001-4. [PubMed: 24336132]
[20]. CDC. Flu vaccination coverage among pregnant women - United States, 2015-16 flu season. FluVaxView 2016. Available at: https://www.cdc.gov/flu/fluvaxview/pregnantcoverage_1516estimates.htm [accessed Dec 20, 2016]
[21]. Ding H, Black CL, Ball S, et al. Influenza vaccination coverage among pregnant women - United States, 2013-14 influenza season. MMWR 2014;63(37):816-21. [PubMed: 25233283]
[22]. Ding H, Black CL, Ball S, et al. Influenza vaccination coverage among pregnant women - United States, 2014-15 influenza season. MMWR 2015;64(36):1000-5. [PubMed: 26390253]
[23]. Kay MK, Koelemay KG, Kwan-Gett TS, Cadwell BL, Duchin JS. 2009 pandemic influenza A vaccination of pregnant women: King County, Washington State, 2009-2010. Am J Prev Med 2012;42(6):S172-S179. [PubMed: 22704434]
[24]. Poehling KA, Peroff T, Dittus RS, Griffin MR, Hickson GB, Edwards KM. Predictors of influenza virus vaccination Status in hospitalized children. Pediatrics 2001;108(6):1-6. [PubMed: 11433046]
[25]. Vlahov D, Bond KT, Jones KC, Ompad DC. Factors associated with differential uptake of seasonal influenza immunizations among underserved communities during the 2009-2010 influenza season. J Community Health 2012;37(2):282-7. [PubMed: 21785857]
[26]. Benedict KM, Kennedy ED, Santibanez TA, et al. Recommendations and offers for adult influenza vaccination, 2011-2012 season, United States. Vaccine 2016;epub ahead of print.
[27]. CDC. Surveillance of influenza vaccination coverage - United States, 2007-08 through 2011-12 influenza seasons. MMWR 2013;62(SS04):1-29.
[28]. CDC. About the National Immunization Surveys. CDC 2017 Available at: https://www.cdc.gov/ vaccines/imz-managers/nis/about.html [accessed Sep 8, 2017]
[29]. Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Dietz V. Vaccination coverage among children aged 19-35 months - United States, 2015. MMWR 2016;65(39):1065-71. [PubMed: 27711036]
[30]. Jain N, Singleton JA, Montgomery M, Skallard B. Determining accurate vaccination coverage rates for adolescents: the National Immunization Survey-Teen 2006. Public Health Rep 2009;124(5):642-51. [PubMed: 19753942]
[31]. Reagan-Steiner S, Yankey D, Jeyarajah J, et al. National, regional, state, and selected local area vaccination coverage among adolescents aged 13-17 years - United States, 2015. MMWR 2016;65(33):850-8. [PubMed: 27561081]
[32]. Smith PJ, Battaglia MP, Huggins VJ, et al. Overview of the sampling design and statistical methods used in the National Immunization Survey. Am J Prev Med 2001;20(4 Suppl):17-24. [PubMed: 11331127]
[33]. Smith PJ, Hoaglin DC, Battaglia MP, Khare M, Barker LE. Statistical methodology of the National Immunization Survey, 1994-2002. National Center for Health Statistics; 2005 Report No.: 138.
[34]. Wolter KM, Smith PJ, Khare M, et al. Statistical methodology of the National Immunization Survey, 2005-2014 National Center for Health Statistics. Vital and Health Statistics 1(61). 2017 Available at: https://www.cdc.gov/nchs/data/series/sr_01/sr01_061.pdf [accessed Mar 21, 2018]
[35]. CDC. Flu vaccination coverage, United States, 2013-14 influenza season. FluVaxView 2014 Available at: https://www.cdc.gov/flu/fluvaxview/coverage-1314estimates.htm [accessed Dec 13, 2017]
[36]. CDC. Flu vaccination coverage, United States, 2014-15 influenza season. FluVaxView 2015 Available at: https://www.cdc.gov/flu/fluvaxview/coverage-1415estimates.htm [accessed Dec 13, 2017]
[37]. Frankel L The report of the CASRO task force on response rates In: Wiseman F, editor. Improving Data Quality in Sample Surveys. Cambridge, MA, Marketing Science Institute, 1983.
[38]. NORC at the University of Chicago. NORC 2018 Available at: http://www.norc.org/Pages/ default.aspx [accessed Mar 23, 2018]
[39]. Bourgeois FT, Valim C, Wei JC, McAdam AJ, Mandl KD. Influenza and other respiratory virusrelated emergency department visits among young children. Pediatrics 2016;118(1).
[40]. CDC. Children, the flu, and the flu vaccine. CDC 2016 Available at: https://www.cdc.gov/flu/ protect/children.htm [accessed Jan 9, 2017]
[41]. Poehling KA, Edwards KM, Weinberg GA, et al. The underrecognized burden of influenza in young children. N Engl J Med 2006;355:31-40. [PubMed: 16822994]
[42]. Rolfes MA, Foppa IM, Garg S, et al. Estimated influenza illnesses, medical visits, hospitalizations, and deaths averted by vaccination in the United States. CDC 2016 Available at: https://www.cdc.gov/flu/about/disease/2015-16.htm [accessed Jan 9, 2017]
[43]. Hofstetter AM, Robinson JD, Lepere K, Cunningham M, Etsekson N, Opel DJ. Clinician-parent discussions about influenza vaccination of children and their association with vaccine acceptance. Vaccine 2017;35(20):2709-15. [PubMed: 28392141]
[44]. Oster NV, McPhillips-Tangum CA, Averhoff F, Howell K. Barriers to adolescent immunization: A survey of family physicians and pediatricians. J Am Board Fam Med 2005;18(1):13-9.
[45]. Guide to Community Preventive Services. Vaccination. The Community Preventive Services Task Force 2016 Available at: https://www.thecommunityguide.org/topic/vaccination [accessed Mar 26, 2018]
[46]. CDC. Vaccines for Children Program (VFC): About VFC. National Center for Immunization and Respiratory Diseases 2016 Available at: https://www.cdc.gov/vaccines/programs/vfc/about/ index.html [accessed Oct 13, 2017]

Figure 1.
Prevalence of children 6 months- 17 years for whom their parent received a provider recommendation for them to receive an influenza vaccination, United States, National Immunization Survey-Flu (NIS-Flu), 2015-16 influenza season

Characteristics	2013-14 influenza season				2014-15 influenza season				2015-16 influenza season			
	Visit since July 1st		No visit since July 1st		Visit since July 1st		No visit since July 1st		Visit since July 1st		No visit since July 1st	
	$\underset{\mathbf{n}}{\text { unweighted }}$	$\begin{gathered} \text { weighted } \\ \% \\ (\pm 95 \% \\ \left.\mathbf{C I}^{*}\right) \end{gathered}$	$\underset{\mathbf{n}}{\text { unweighted }}$	weighted ($\pm \mathbf{9 5 \%}$ CI)	unweighted n	$\begin{gathered} \text { weighted } \\ \% \\ (\pm 95 \% \\ \text { CI }) \end{gathered}$	$\underset{\mathbf{n}}{\text { unweighted }}$	$\begin{gathered} \text { weighted } \\ \% \\ (\pm 95 \% \\ \text { CI }) \end{gathered}$	$\underset{\mathrm{n}}{\text { unweighted }}$	$\begin{gathered} \text { weighted } \\ \% \\ (\pm 95 \% \\ \text { CI }) \end{gathered}$	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	$\begin{gathered} \text { weighted } \\ \% \\ (\pm 95 \% \\ \text { CI }) \end{gathered}$
Total	24,515	$100(\pm 0.0)$	9,045	$100(\pm 0.0)$	26,825	$100(\pm 0.0)$	9,032	$100(\pm 0.0)$	25,261	$100(\pm 0.0)$	8,394	$100(\pm 0.0)$
Influenza vaccination status												
≥ 1 dose	15,560	$60.7(\pm 2.2)$	5,284	$59.2(\pm 2.8)$	17,179	$61.2(\pm 1.3)$	5,183	55.8 ($\pm 2.2)$	15,996	$60.4 \pm 1.3)$	4,916	$59.2(\pm 2.2)$
Not vaccinated	8,955	$39.3(\pm 2.2)$	3,761	40.8 ($\pm 2.8)$	9,646	38.8 ($\pm 1.3)$	3,849	44.2 ($\pm 2.2)$	9,265	39.6 ($\pm 1.3)$	3,478	40.8 ($\pm 2.2)$
Provider recommendation												
Yes	17,294	$69.1(\pm 2.2)$			19,135	$71.0(\pm 1.2)$			17,784	$70.3(\pm 1.2)$		
No	7,221	$30.9(\pm 2.2)$			7,690	$29.0(\pm 1.2)$			7,477	$29.7(\pm 1.2)$		
Child's age												
6-23 months	3,303	$10.0(\pm 1.0)$	502	$5.2(\pm 1.5)$	4,049	$10.3(\pm 0.6)$	583	$4.2(\pm 0.7)$	3,748	$10.0(\pm 0.6)$	581	$5.0(\pm 0.8)$
2-4 years	3,802	$16.0(\pm 2.2)$	1,015	$10.8(\pm 1.6)$	4,647	$15.1(\pm 0.9)$	1,215	12.9 ($\pm 1.4)$	4,312	$14.9(\pm 0.9)$	1,123	$12.0(\pm 1.3)$
5-12 years	11,693	$42.5(\pm 2.3)$	5,269	54.6 ($\pm 2.8)$	11,324	$44.7(\pm 1.3)$	4,619	$50.8(\pm 2.0)$	10,264	$45.3(\pm 1.3)$	4,109	$50.8(\pm 2.2)$
13-17 years	5,717	$31.4 \pm$ 2.2)	2,259	29.4 (± 2.5)	6,805	30.0 ($\pm 1.2)$	2,615	32.2 ($\pm 2.0)$	6,937	$29.8(\pm 1.2)$	2,581	32.2 ($\pm 2.1)$
Child's sex												
Male	12,583	$50.7(\pm 2.3)$	4,692	$51.7(\pm 2.8)$	13,797	$51.3(\pm 1.3)$	4,680	$50.5(\pm 2.1)$	13,088	$50.3(\pm 1.3)$	4,452	53.4 ($\pm 2.2)$
Female	11,932	49.3 ($\pm 2.3)$	4,353	48.3 ($\pm 2.8)$	13,028	$48.7(\pm 1.3)$	4,352	49.5 (± 2.1)	12,173	$49.7(\pm 1.3)$	3,942	46.6 ($\pm 2.2)$
Child's race/ethnicity ${ }^{\dagger}$												
White, non-Hispanic	15,006	$54.1(\pm 2.5)$	5,258	51.6 ($\pm 3.0)$	15,357	54.5 ($\pm 1.4)$	4,720	49.4 ($\pm 2.2)$	14,934	53.9 ($\pm 1.4)$	4,486	$47.2(\pm 2.2)$
Black, non-Hispanic	2,510	$14.3(\pm 1.6)$	928	13.2 ($\pm 2.0)$	2,840	$13.8(\pm 1.0)$	1,012	13.5 ($\pm 1.5)$	2,744	$13.2(\pm 0.9)$	975	16.0 ($\pm 1.8)$
Hispanic	4,326	$22.9(\pm 2.6)$	1,758	25.3 ($\pm 2.8)$	5,567	$22.8(\pm 1.3)$	2,188	$27.4(\pm 2.1)$	4,369	$23.4(\pm 1.3)$	1,762	26.4 (\pm 2.2)
Other, non-Hispanic	2,673	$8.7(\pm 1.5)$	1,101	$9.9(\pm 1.7)$	3,061	$8.9(\pm 0.7)$	1,112	9.7 ($\pm 1.2)$	3,214	$9.5(\pm 0.8)$	1,171	$10.4(\pm 1.3)$
Language survey completed												
English	22,689	$89.5(\pm 1.4)$	8,203	$85.8(\pm 2.3)$	24,311	88.3 ($\pm 1.1)$	7,902	84.3 ($\pm 1.8)$	23,487	$90.3(\pm 0.9)$	7,493	85.5 ($\pm 1.8)$

Characteristics	2013-14 influenza season				2014-15 influenza season				2015-16 influenza season			
	Visit since July 1st		No visit since July 1st		Visit since July 1st		No visit since July 1st		Visit since July 1st		No visit since July 1st	
	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	weighted ($\pm 95 \%$ CI^{*})	$\underset{\mathbf{n}}{\substack{\text { unweighted }}}$	weighted ($\pm 95 \%$ CI)	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	weighted ($\pm 95 \%$ CI)	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	weighted ($\pm 95 \%$ CI)	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	weighted ($\pm \mathbf{9 5 \%}$ CI)	$\begin{gathered} \text { unweighted } \\ \mathbf{n} \end{gathered}$	weighted $\pm \mathbf{9 5 \%}$ CI)
Spanish	1,540	9.3 ($\pm 1.3)$	703	$12.1(\pm 2.2)$	2,153	$10.4(\pm 1.1)$	972	13.6 ($\pm 1.8)$	1,396	$8.2(\pm 0.8)$	709	$11.9(\pm 1.7)$
Other language	286	$1.2(\pm 0.3)$	139	$2.1(\pm 0.9)$	361	1.3 ($\pm 0.3)$	158	$2.1(\pm 0.6)$	378	$1.6(\pm 0.4)$	192	2.6 ($\pm 0.8)$
Mother's education												
<High school	2,127	13.3 ($\pm 1.8)$	1,055	$16.1(\pm 2.5)$	2,420	$11.9(\pm 1.1)$	1,179	$17.8(\pm 1.8)$	2,175	$11.7(\pm 1.1)$	1,035	$16.1(\pm 1.6)$
High school or equivalent	3,944	$18.1(\pm 1.8)$	1,777	$21.8(\pm 2.6)$	4,479	$19.0(\pm 1.2)$	1,815	20.3 ($\pm 1.8)$	3,966	$17.2(\pm 1.0)$	1,640	$21.3(\pm 2.1)$
Some college	6,223	$25.5(\pm 1.9)$	2,353	27.0 ($\pm 2.8)$	6,643	25.9 ($\pm 1.2)$	2,230	24.0 ($\pm 1.8)$	6,200	$25.7(\pm 1.2)$	1,979	22.6 ($\pm 1.8)$
\pm College degree	11,309	$43.1 \pm 2.5)$	3,409	$35.1(\pm 2.8)$	12,128	$43.2(\pm 1.3)$	3,313	38.0 ($\pm 2.2)$	11,817	$45.4(\pm 1.4)$	3,279	$40.0(\pm 2.3)$
Poverty/annual household income ${ }^{\ddagger}$												
Above poverty ($>\$ 75,000$)	9,993	$35.5(\pm 2.4)$	3,222	$31.4(\pm 2.7)$	10,817	$36.0 \pm \pm 1.2)$	3,144	$32.8(\pm 2.0)$	10,648	38.6 ($\pm 1.3)$	3,079	$33.2(\pm 2.1)$
Above poverty ($\$ \$ 75,000$)	8,127	$33.1 \pm 2.2)$	3,202	$32.0(\pm 2.7)$	8,653	$30.9 \pm \pm 1.2)$	2,989	29.3 ($\pm 1.9)$	8,017	$30.8(\pm 1.3)$	2,710	29.8 ($\pm 2.0)$
Below poverty	3,909	$21.8 \pm 2.1)$	1,532	$24.2(\pm 2.8)$	4,562	$21.3(\pm 1.3)$	1,686	23.6 ($\pm 2.0)$	3,833	$19.0(\pm 1.1)$	1,469	$22.2(\pm 2.0)$
Unknown	2,486	$9.6 \pm 1.1)$	1,089	$12.4(\pm 2.0)$	2,793	$11.8(\pm 0.9)$	1,213	$14.4(\pm 1.5)$	2,763	$11.6(\pm 0.8)$	1,136	$14.8(\pm 1.6)$
Number of children in household												
1	7,952	25.6 ($\pm 1.8)$	2,684	$22.1(\pm 2.1)$	9,363	$26.7(\pm 1.0)$	2,861	23.4 ($\pm 1.7)$	8,941	$26.7(\pm 1.1)$	2,692	$24.2(\pm 1.8)$
2-3	14,382	$62.3(\pm 2.2)$	5,339	$63.2(\pm 2.8)$	15,096	$61.1(\pm 1.3)$	5,154	$60.9(\pm 2.2)$	14,152	$61.1(\pm 1.3)$	4,839	$61.8(\pm 2.2)$
24	2,132	$12.1 \pm 1.6)$	1,000	$14.7(\pm 2.3)$	2,285	$12.2(\pm 1.1)$	980	$15.7(\pm 1.9)$	2,063	$12.2(\pm 1.0)$	849	$14.0(\pm 1.6)$
Urban-rural residence												
Urban (MSA, ${ }^{\S}$ principal city)	6,505	$25.7(\pm 1.9)$	2,240	24.8 ($\pm 2.6)$	7,566	26.6 ($\pm 1.2)$	2,395	25.2 ($\pm 2.0)$	6,764	25.9 ($\pm 1.2)$	2,277	25.2 ($\pm 1.9)$
Suburban (MSA, not principal city)	13,097	$60.5(\pm 2.2)$	4,696	58.3 ($\pm 2.9)$	14,615	$59.7(\pm 1.3)$	4,815	$59.8(\pm 2.1)$	13,945	$59.8(\pm 1.3)$	4,513	$59.8(\pm 2.2)$
Rural (non-MSA)	4,913	$13.8(\pm 1.3)$	2,109	$16.9(\pm 2.2)$	4,644	$13.7(\pm 0.8)$	1,822	$15.0(\pm 1.3)$	4,552	$14.3(\pm 0.9)$	1,604	$15.1(\pm 1.4)$
Region of residence												
Northeast	5,325	$17.8(\pm 1.4)$	1,427	$12.5(\pm 1.8)$	5,432	$17.2(\pm 0.9)$	1,374	$14.0(\pm 1.5)$	5,854	17.6 ($\pm 0.9)$	1,529	$13.0(\pm 1.3)$
Midwest	5,013	$21.5(\pm 1.7)$	2,056	$20.7(\pm 1.8)$	5,170	$21.5(\pm 0.9)$	1,874	$21.8(\pm 1.5)$	4,652	$21.4(\pm 0.9)$	1,627	$21.9(\pm 1.6)$
South	9,136	$37.5(\pm 2.2)$	3,163	$39.8(\pm 2.9)$	10,819	$37.7(\pm 1.2)$	3,573	37.5 ($\pm 2.0)$	9,921	38.0 ($\pm 1.2)$	3,259	38.7 ($\pm 2.1)$

recommendation for them to receive an influenza vaccination," and who received influenza vaccination stratified by parental receipt of provider recommendation, nationally and by state of residence, United States, National Immunization Survey-Influenza (NIS-Flu), 2013-14 through 2015-16 influenza seasons

State of residence	2013-14 influenza season					2014-15 influenza season					2015-16 influenza season				
	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		$\mathbf{P A R}^{\dagger}$	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR
			$\begin{gathered} \text { Recommenda } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\underset{\text { tion }}{\text { Recommenda }}$	$\underset{\substack{\text { No } \\ \text { recommenda } \\ \text { tion }}}{ }$				$\underset{\text { tion }}{\text { Recommenda }}$	$\underset{\substack{\text { No } \\ \text { recommenda } \\ \text { tion }}}{ }$	
	n	$\%\left(\pm 95 \% \mathrm{Cl}^{\text {\% }}\right.$)	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%
United States	24,515	$69.1 \pm 2.2)$	71.1 ($\pm 2.4)$	37.0 ($\pm 4.6)$	38.9	26,826	$71.0(\pm 1.2)$	72.4 ($\pm 1.4)$	34.4 (± 2.1)	44.0	25,261	70.3 ($\pm 1.2)$	72.2 ($\pm 1.5)$	32.1 ($\pm 2.3)$	46.8
Alabama	399	69.5 ($\pm 6.2)$	75.0 ($\pm 8.1)$	$37.1(\pm 10.8)^{\mathcal{S}}$	41.5	504	62.4 (7.3)	73.2 ($\pm 6.9)$	$35.7(\pm 11.5)^{\mathcal{S}}$	39.6	422	$62.9(\pm 6.5)$	76.7 ($\pm 6.2)$	$47.9(\pm 11.7)^{\mathcal{S}}$	27.4
Alaska	380	$62.9(\pm 10.0)$	69.0 ($\pm 8.7)$	$29.9(\pm 13.7)^{\mathcal{E}}$	45.1	486	57.9 ($\pm 7.3)$	75.3 ($\pm 7.6)$	$39.6(\pm 11.1)^{\mathcal{\xi}}$	34.3	590	$62.2(\pm 6.4)$	$71.7(\pm 7.9)$	19.8 ($\pm 6.8)$	62.0
Arizona	369	$66.1(\pm 11.0)^{\text {s }}$	$60.0(\pm 18.1)^{\S}$	$21.9(\pm 11.8)^{\S}$	53.5	483	63.8 ($\pm 6.8)$	70.6 ($\pm 7.0)$	27.0 ($\pm 9.7)$	50.7	497	$66.1(\pm 6.8)$	$75.7(\pm 7.1)$	$33.2(\pm 10.3)^{\S}$	45.8
Arkansas	403	$54.8(\pm 26.5)^{\mathcal{S}}$	81.6 ($\pm 9.9)$	$24.6(\pm 26.1)^{\xi}$	55.9	391	65.5 ($\pm 7.4)$	$71.0(\pm 10.1)^{\text {§ }}$	$62.0(\pm 11.6)^{\mathcal{S}}$	8.7	340	63.6 ($\pm 6.9)$	82.4 ($\pm 6.8)$	$48.6(\pm 12.1)^{\text {g }}$	30.7
California	457	77.7 ($\pm 8.1)$	76.3 (± 8.9)	$31.7(\pm 14.3)^{\mathcal{E}}$	52.2	607	74.5 (± 5.5)	71.1 ($\pm 6.6)$	$35.4(\pm 11.2)^{\xi}$	42.9	519	$70.2(\pm 6.7)$	$67.2(\pm 8.5)$	$29.8(\pm 12.9)^{\S}$	46.8
Colorado	561	75.4 (7.1)	$61.2(\pm 14.4)^{\S}$	$43.6(\pm 13.0)^{\S}$	23.3	493	75.6 ($\pm 5.2)$	70.2 ($\pm 6.9)$	$28.4(\pm 10.4)^{\xi}$	52.7	265	$69.1(\pm 8.2)$	$77.4(\pm 8.1)$	$33.0(\pm 15.2)^{\text {g }}$	48.2
Connecticut	483	$75.2(\pm 6.5)$	79.4 ($\pm 7.7)$	$31.2(\pm 11.1)^{\mathcal{S}}$	53.7	489	75.3 (± 5.5)	78.0 ($\pm 6.2)$	$33.2(\pm 11.3)^{\S}$	50.4	537	73.6 ($\pm 6.1)$	86.5 ($\pm 4.4)$	$37.4(\pm 10.6)^{\mathcal{S}}$	49.1
Delaware	518	$75.2(\pm 11.6)^{\text {S }}$	$67.8(\pm 17.5)^{\mathcal{\xi}}$	$27.9(\pm 16.6)^{\S}$	51.8	419	$77.4(\pm 6.0)$	80.8 ($\pm 6.2)$	$46.1(\pm 13.9)^{\text {§ }}$	36.8	431	78.0 ($\pm 9.9)$	80.9 ($\pm 9.5)$	$25.5(\pm 13.7)^{\mathcal{S}}$	62.9
District of Columbia	393	$64.6(\pm 14.3)^{\text {s }}$	85.3 ($\pm 5.6)$	$21.0(\pm 13.7)^{\xi}$	66.4	754	$79.0(\pm 5.2)$	$84.4(\pm 5.4)$	$43.0(\pm 12.2)^{\S}$	43.2	549	$83.7(\pm 4.9)^{/ /}$	83.1 ($\pm 5.7)$	$52.3(\pm 13.7)^{\mathcal{S}}$	33.0
Florida	413	64.9 ($\pm 8.6)$	$64.6(\pm 13.9)^{\mathcal{\xi}}$	$30.2(\pm 11.2)^{\xi}$	42.5	550	62.6 ($\pm 6.1)$	$65.7(\pm 7.4)$	22.8 ($\pm 7.6)$	54.1	531	62.3 ($\pm 5.9)$	58.8 ($\pm 7.9)$	26.9 ($\pm 8.7)$	42.5
Georgia	391	64.8 ($\pm 9.2)$	$66.9(\pm 10.1)^{\text {§ }}$	$32.7(\pm 13.4)^{\S}$	40.4	511	$70.2(\pm 5.8)$	$70.9(\pm 7.1)$	$34.8(\pm 10.7)^{\text {s }}$	42.1	528	$68.7(\pm 5.4)$	66.5 ($\pm 7.7)$	28.3 ($\pm 8.2)$	48.1
Hawaii	310	$80.5(\pm 10.0)$	$74.9(\pm 10.7)^{\text {§ }}$	$42.7(\pm 26.9)^{\S}$	37.8	392	$75.5(\pm 7.6)$	83.1 ($\pm 5.9)$	$57.0(\pm 16.5)^{\text {s }}$	25.7	444	74.6 ($\pm 6.5)$	82.1 ($\pm 6.0)$	$43.9(\pm 12.7)^{\xi}$	39.4
Idaho	276	$59.2(\pm 10.7)^{\mathcal{S}}$	$70.6(\pm 12.0)^{\mathcal{S}}$	$29.7(\pm 18.9)^{\mathcal{\xi}}$	44.9	347	$63.1(\pm 7.4)$	72.8 ($\pm 8.5)$	$28.5(\pm 12.6)^{\text {S }}$	49.5	298	$52.9(\pm 10.0)$	71.3 ($\pm 9.6)$	14.9 ($\pm 8.2)$	66.7
Illinois	950	$69.3(\pm 11.5)^{\mathcal{E}}$	$60.8(\pm 12.3)^{\S}$	$26.1(\pm 17.0)^{\mathcal{E}}$	48.0	1,003	71.4 ($\pm 4.0)$	67.0 ($\pm 5.4)$	22.1 ($\pm 5.9)$	59.2	773	$68.7(\pm 4.6)$	69.5 (± 5.3)	26.5 ($\pm 7.0)$	52.7

Author Manuscript

State of residence	2013-14 influenza season					2014-15 influenza season					2015-16 influenza season				
	Prevalence of provider recommendation				$\mathbf{P A R}^{\dagger}$	Prevalence of provider recommendation		coverage by parental receipt of provider recommendation\qquad		PAR	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR
			$\begin{gathered} \text { Recommenda } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\begin{aligned} & \text { Recommenda } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\begin{aligned} & \text { Recommenda } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$	
	n	$\%\left(\pm 95 \% \mathrm{Cl}^{\text {\% }}\right.$)	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%
Indiana	505	66.1 (7.9)	$58.3(\pm 12.3)^{\S}$	$28.6(\pm 11.4)^{\text {§ }}$	40.7	416	63.4 ($\pm 6.2)$	67.6 ($\pm 7.7)$	$34.8(\pm 10.7)^{\S}$	37.4	462	$70.0(\pm 6.0)$	68.0 ($\pm 7.6)$	19.2 (± 7.5)	64.0
Iowa	388	65.9 ($\pm 7.0)$	$70.3(\pm 11.0)^{\S}$	$34.5(\pm 10.4)^{\S}$	40.6	396	$71.3(\pm 6.7)$	69.5 ($\pm 7.8)$	$26.9(\pm 11.3)^{\mathcal{E}}$	53.0	392	68.2 ($\pm 6.3)$	68.5 ($\pm 7.9)$	$40.1(\pm 12.0)^{\xi}$	32.6
Kansas	311	75.3 ($\pm 7.8)$	75.5 ($\pm 10.0)$	$35.8(\pm 12.2)^{\xi}$	45.5	366	$56.0(\pm 10.2)^{\frac{\xi}{. / /}}$	70.4 ($\pm 9.3)$	$34.5(\pm 16.1)^{\S}$	36.8	304	63.3 ($\pm 7.9)^{/ /}$	$70.7(\pm 9.1)$	$23.5(\pm 11.5)^{\mathcal{E}}$	56.0
Kentucky	346	$69.4 \pm 8.1)$	$61.4(\pm 14.5)^{\S}$	25.3 ($\pm 9.7)$	49.8	480	$67.7(\pm 5.8)$	63.4 ($\pm 7.9)$	30.3 ($\pm 9.3)$	42.5	442	62.0 ($\pm 6.1)$	69.6 ($\pm 7.9)$	$25.4(\pm 8.5)$	51.9
Louisiana	498	65.2 ($\pm 8.9)$	79.5 ($\pm 8.0)$	24.4 (± 8.9)	59.6	429	69.5 ($\pm 5.8)$	68.5 ($\pm 7.7)$	$38.1(\pm 10.8)^{\mathcal{E}}$	35.7	380	70.5 ($\pm 6.1)$	$71.1(\pm 7.6)$	19.6 (± 8.7)	64.9
Maine	428	$69.8(\pm 11.5)^{\mathcal{S}}$	$71.7(\pm 7.2)$	$27.1(\pm 16.2)^{\xi}$	53.5	452	$77.5(\pm 7.5)$	79.1 ($\pm 6.1)$	$37.6(\pm 16.0)^{\mathcal{E}}$	46.1	575	$69.0(\pm 5.9)$	75.6 ($\pm 6.7)$	25.0 ($\pm 8.9)$	58.3
Maryland	482	76.9 ($\pm 8.4)$	77.8 ($\pm 8.8)$	$34.0(\pm 15.8){ }^{\text {s }}$ ¢	49.8	718	78.9 ($\pm 7.2)$	$79.7(\pm 8.2)$	$54.0(\pm 19.9)^{\mathcal{E}}$	27.3	699	$71.1(\pm 7.3)$	$81.3(\pm 7.4)$	$63.4(\pm 13.2)^{\S}$	16.7
Massachusetts	497	$80.7(\pm 7.5)$	$82.7(\pm 6.2)$	$40.5(\pm 17.9)^{\xi}$	45.7	470	$85.0(\pm 4.6)$	79.6 ($\pm 5.9)$	$52.2(\pm 16.3)^{\S}$	30.9	627	$80.7(\pm 4.5)$	82.4 ($\pm 4.7)$	$51.2(\pm 13.0)^{\S}$	33.0
Michigan	389	$66.1(\pm 9.6)$	$69.6(\pm 13.3)^{\text {s }}$	$25.8(\pm 12.6)^{\mathcal{S}}$	52.9	408	73.3 ($\pm 6.5)$	66.3 ($\pm 7.4)$	$30.3(\pm 12.7)^{\text {§ }}$	46.5	342	73.8 ($\pm 5.7)$	$64.2(\pm 8.1)$	$30.2(\pm 12.1)^{\S}$	45.4
Minnesota	318	$61.1(\pm 24.2)^{\mathcal{S}}$	$72.7(\pm 11.4)^{\mathcal{E}}$	$18.6(\pm 19.5)^{\mathcal{F}}$	64.0	440	$66.3(\pm 7.3)$	71.6 ($\pm 8.1)$	$48.8(\pm 14.3)^{\text {§ }}$	23.7	408	69.3 ($\pm 6.1)$	76.3 ($\pm 6.1)$	$49.0(\pm 12.1)^{\mathcal{E}}$	27.9
Mississippi	399	$71.3(\pm 11.0)^{\mathcal{S}}$	$59.1(\pm 26.5)^{\xi}$	$24.1(\pm 10.1)^{\S}$	50.9	453	64.8 ($\pm 5.8)$	60.5 ($\pm 7.9)$	32.8 ($\pm 9.4)$	35.4	386	$54.9(\pm 7.1)^{1 / .9 /}$	75.4 (± 7.5)	29.0 ($\pm 9.9)$	46.8
Missouri	395	$56.8(\pm 10.7)^{\mathcal{S}}$	$66.7(\pm 10.5)^{\mathcal{S}}$	$45.9(\pm 20.6)^{\xi}$	20.5	398	$71.9(\pm 6.3) /$	70.4 ($\pm 8.1)$	$33.2(\pm 11.3)^{\text {§ }}$	44.6	356	$68.1(\pm 6.5)$	80.2 ($\pm 6.5)$	28.6 ($\pm 9.7)$	55.1
Montana	352	$60.9(\pm 8.9)$	76.1 ($\pm 8.3)$	$29.4(\pm 14.1)^{\xi}$	49.2	303	$58.0(\pm 10.4)^{\mathcal{E}}$	$68.7(\pm 10.4)^{\S}$	$18.9(\pm 12.4)^{\text {§ }}$	60.4	325	$61.3(\pm 11.1)^{\mathcal{E}}$	$67.7(\pm 12.3)^{\text {§ }}$	13.7 ($\pm 7.3)$	70.7
Nebraska	327	$47.7(\pm 30.0)^{/ /}$	73.3 ($\pm 7.6)$	$14.5(\pm 17.9)^{\xi}$	65.9	319	66.5 ($\pm 8.2)$	78.0 ($\pm 8.6)$	$50.2(\pm 15.6)^{\text {§ }}$	26.9	266	$71.4(\pm 8.0)$	80.9 ($\pm 7.2)$	$24.1(\pm 11.7)^{\text {g }}$	62.7
Nevada	452	$70.7(\pm 8.3)$	$71.0(\pm 11.3)^{\text {g }}$	$17.1(\pm 12.2)^{\xi}$	69.0	374	$61.5(\pm 7.6)$	$62.4(\pm 10.2)^{\S}$	$28.3(\pm 12.1)^{\text {§ }}$	42.6	321	67.3 ($\pm 7.4)$	$66.6(\pm 10.4)^{\mathcal{S}}$	19.0 ($\pm 8.4)$	62.8
New Hampshire	504	$77.5(\pm 8.8)$	83.6 ($\pm 7.6)$	$44.2(\pm 14.5)^{\S}$	40.9	428	$79.7(\pm 5.1)$	71.0 ($\pm 9.3)$	$33.0(\pm 12.2)^{\text {§ }}$	47.9	488	76.6 ($\pm 5.4)$	82.1 ($\pm 6.0)$	$47.5(\pm 12.8)^{\mathcal{E}}$	35.8
New Jersey	540	$70.0(\pm 8.2)$	80.2 ($\pm 6.1)$	$37.7(\pm 16.1)^{\text {s }}$	44.1	533	$72.9(\pm 5.3)$	80.5 (± 5.5)	$37.9(\pm 10.9)^{\mathcal{E}}$	45.0	522	76.6 ($\pm 4.6)$	79.6 ($\pm 5.1)$	$38.2(\pm 11.0)^{\mathcal{E}}$	45.4
New Mexico	489	$80.3(\pm 9.4)$	$77.0(\pm 16.3)^{\S}$	$41.5(\pm 10.7)^{\mathcal{S}}$	40.7	440	$68.0(\pm 6.1)^{/ /}$	74.0 ($\pm 8.1)$	$53.0(\pm 11.6)^{\mathcal{S}}$	21.2	252	$77.4(\pm 7.1)^{\text {I/ }}$	82.4 ($\pm 8.0)$	$32.5(\pm 13.9)^{\text {§ }}$	54.3

Author Manuscript

State of residence	2013-14 influenza season					2014-15 influenza season					2015-16 influenza season				
	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		$\mathbf{P A R}^{\dagger}$	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR
			$\underset{\text { tion }}{\text { Recommenda }}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\underset{\text { tion }}{\text { Recommenda }}$	$\underset{\substack{\text { No } \\ \text { recommenda } \\ \text { tion }}}{ }$				$\begin{gathered} \text { Recommenda } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$	
	n	$\%\left(\pm 95 \% \mathrm{Cl}^{\text {\% }}\right.$)	\% ($\pm 95 \%$ CI)	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	$\%(\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%
New York	862	69.3 ($\pm 9.8)$	$69.7(\pm 8.8)$	$54.6(\pm 19.0)^{\S}$	16.1	1,020	$75.7(\pm 3.8)$	74.8 ($\pm 5.0)$	35.9 ($\pm 7.8)$	45.1	950	76.0 ($\pm 3.9)$	72.8 ($\pm 4.6)$	36.5 ($\pm 8.8)$	43.0
North Carolina	502	$76.9 \pm$ (${ }^{\text {c.5 }}$	$68.6(\pm 14.8)^{\mathcal{E}}$	$36.4(\pm 10.7)^{\mathcal{E}}$	40.5	384	68.5 ($\pm 6.9)$	74.9 ($\pm 7.4)$	$31.7(\pm 11.9)^{\S}$	48.3	537	$77.6(\pm 5.0)^{\text {g/ }}$	69.6 (± 7.1)	24.0 ($\pm 9.4)$	59.6
North Dakota	373	$63.8(\pm 8.6)$	$68.3(\pm 10.6)^{\mathcal{S}}$	$46.1(\pm 15.3)^{\S}$	23.5	334	$74.4(\pm 8.3)$	79.6 ($\pm 7.7)$	$40.7(\pm 17.9)^{\S}$	41.6	243	66.8 ($\pm 9.4)$	$75.7(\pm 12.2)^{\mathcal{E}}$	$41.9(\pm 19.0)^{\mathcal{S}}$	35.0
Ohio	432	73.3 ($\pm 8.7)$	$60.5(\pm 18.3)^{\mathcal{S}}$	22.4 ($\pm 8.8)$	55.5	418	69.3 ($\pm 6.2)$	73.7 ($\pm 7.1)$	23.7 ($\pm 9.7)$	59.4	404	$71.0(\pm 6.2)$	79.3 ($\pm 6.3)$	$21.2(\pm 10.3)^{\mathcal{S}}$	66.1
Oklahoma	417	$68.1(\pm 9.7)$	83.1 ($\pm 7.9)$	$29.7(\pm 10.5)^{\S}$	55.0	367	$69.9(\pm 6.4)$	75.4 (± 8.3)	$37.1(\pm 11.7)^{\S}$	41.9	325	$60.4 \pm 7.4)$	81.9 ($\pm 6.7)$	$36.8(\pm 12.1)^{\text {s }}$	42.5
Oregon	353	$72.1(\pm 8.2)$	71.1 ($\pm 9.6)$	$25.6(\pm 13.4)^{\mathcal{E}}$	56.2	346	73.6 ($\pm 7.0)$	75.8 ($\pm 8.1)$	$31.1(\pm 14.8)^{\S}$	51.4	345	$62.7(\pm 7.9)^{\text {g/ }}$	74.9 ($\pm 7.8)$	25.0 ($\pm 9.4)$	55.6
Pennsylvania	1,114	77.3 ($\pm 5.1)$	76.8 ($\pm 6.3)$	24.0 ($\pm 8.3)$	63.0	1,057	$75.5(\pm 8.3)$	66.4 ($\pm 9.0)$	$30.5(\pm 15.6)^{\text {§ }}$	47.1	1,185	$74.4(\pm 5.8)$	$72.7(\pm 7.7)$	25.5 ($\pm 9.4)$	57.9
Rhode Island	442	83.6 ($\pm 5.8)$	86.5 ($\pm 5.4)$	$39.1(\pm 15.7)^{\mathcal{E}}$	50.3	506	$85.0(\pm 4.2)$	87.0 (± 4.5)	$54.4(\pm 14.0)^{\S}$	33.7	550	$79.7(\pm 6.8)$	$82.2(\pm 5.4)$	$37.9(\pm 16.1)^{\text {g }}$	48.2
South Carolina	463	68.3 ($\pm 9.0)$	$75.0(\pm 10.4)^{\text {§ }}$	$28.7(\pm 13.2)^{\mathcal{E}}$	52.4	487	$63.1(\pm 6.2)$	66.5 (± 7.7)	32.7 ($\pm 9.9)$	39.5	661	$65.1 \pm$ 6.6)	$72.1(\pm 7.9)$	$35.3(\pm 13.7)^{\text {§ }}$	40.4
South Dakota	291	$66.8(\pm 10.1)^{\mathcal{E}}$	87.9 ($\pm 6.1)$	$50.9(\pm 17.9)^{\mathcal{S}}$	32.7	287	73.4 ($\pm 8.2)$	$71.1(\pm 12.3)^{\S}$	$46.5(\pm 16.7)^{\S}$	28.0	308	67.9 ($\pm 8.0)$	78.7 ($\pm 8.3)$	$54.2(\pm 15.4)^{\mathcal{E}}$	23.5
Tennessee	403	$60.3(\pm 24.4)^{\S}$	75.0 ($\pm 7.9)$	$73.4(\pm 27.4)^{\S}$	1.3	425	65.8 ($\pm 6.4)$	76.5 ($\pm 6.8)$	$41.6(\pm 11.3)^{\S}$	35.6	400	70.6 ($\pm 5.9)$	79.2 ($\pm 5.9)$	$38.5(\pm 11.5)^{\mathcal{S}}$	42.7
Texas	2,109	$60.4 \pm 9.9)$	74.6 (± 8.2)	$51.9(\pm 18.6)^{\mathcal{E}}$	20.9	2,955	$72.5(\pm 3.6) / /$	78.5 ($\pm 4.2)$	41.6 ($\pm 7.3)$	39.1	2,113	$71.1(\pm 3.9) /$	70.5 ($\pm 5.4)$	38.1 ($\pm 7.4)$	37.7
Utah	297	58.6 ($\pm 8.5)$	64.9 (± 9.5)	$39.2(\pm 15.0)^{\S}$	27.8	277	$58.1(\pm 8.9)$	$76.7(\pm 8.7)$	$39.9(\pm 15.5)^{\S}$	34.9	282	64.9 ($\pm 9.8)$	75.3 ($\pm 9.0)$	$30.9(\pm 17.2)^{\S}$	48.3
Vermont	455	$71.1(\pm 9.5)$	$68.3(\pm 13.8)^{\mathcal{S}}$	$18.1(\pm 10.4)^{\mathcal{E}}$	66.4	477	$72.8(\pm 5.3)$	$71.4(\pm 7.3)$	26.1 ($\pm 9.1)$	55.8	420	75.5 ($\pm 6.9)$	$73.4(\pm 13.8)^{\mathcal{S}}$	$31.0(\pm 13.0)^{\text {s }}$	50.8
Virginia	492	$63.5(\pm 16.1)^{\mathcal{E}}$	$65.2(\pm 11.7)^{\mathcal{S}}$	$62.9(\pm 25.6)^{\mathcal{S}}$	2.3	622	75.3 ($\pm 6.8)$	79.6 ($\pm 7.8)$	$38.0(\pm 15.4)^{\S}$	45.2	699	$72.8(\pm 5.9)$	74.5 ($\pm 7.1)$	$34.7(\pm 11.6)^{\delta}$	45.5
Washington	376	66.6 ($\pm 9.3)$	$68.1(\pm 11.6)^{\mathcal{S}}$	$47.4(\pm 18.7)^{\mathcal{E}}$	22.5	439	66.9 ($\pm 6.9)$	65.8 ($\pm 8.0)$	$34.1(\pm 12.4)^{\S}$	38.3	422	$74.5(\pm 6.4)$	73.3 ($\pm 8.3)$	$37.7(\pm 14.2)^{\delta}$	41.3
West Virginia	508	68.4 ($\pm 8.2)$	$75.7(\pm 8.8)$	$19.4(\pm 8.3)$	66.5	370	$70.5(\pm 6.6)$	71.4 ($\pm 7.8)$	$4(\pm 13.30 .4)^{\S}$	35.1	478	60.3 ($\pm 8.9)$	76.9 ($\pm 6.3)$	$21.6(\pm 10.1)^{\text {s }}$	60.7
Wisconsin	334	73.5 ($\pm 7.4)$	70.1 ($\pm 8.8)$	$35.1(\pm 16.1)^{\S}$	42.3	385	76.8 ($\pm 6.4)$	$65.9(\pm 8.9)$	$24.1(\pm 12.7)^{\S}$	57.1	394	$80.2(\pm 5.0)$	$67.7(\pm 7.5)$	$41.4(\pm 14.1)^{\text {§ }}$	33.8

ıdıosnuew ıoчın४
ıd!ıosnuew ıoułņ
ıd!ısnuew ıouın甘
ıd!ıosnuew toutn

State of residence	2013-14 influenza season					2014-15 influenza season					2015-16 influenza season				
	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		$\mathbf{P A R}^{\dagger}$	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendation		Influenza vaccination coverage by parental receipt of provider recommendation		PAR
			$\underset{\text { tion }}{\text { Recommenda }}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\begin{aligned} & \text { Recommenda } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { recommenda } \\ \text { tion } \end{gathered}$				$\begin{gathered} \text { Recommenda } \\ \text { tion } \end{gathered}$	$\underset{\substack{\text { No } \\ \text { recommenda } \\ \text { tion }}}{ }$	
	n	$\%\left(\pm 95 \% \mathrm{Cl}^{\text {\% }}\right.$)	$\%(\pm 95 \% \mathrm{CI})$	$\%(\pm 95 \% \mathrm{Cl})$	\%	n	$\%(\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	n	$\%(\pm 95 \% \mathrm{CI})$	$\%(\pm 95 \% \mathrm{CI})$	$\%(\pm 95 \% \mathrm{CI})$	\%
Wyoming	369	75.2 ($\pm 8.7)$	$51.8(\pm 19.2)^{\S}$	25.2 ($\pm 9.3)$	44.3	418	$57.8(\pm 7.1) / /$	64.9 ($\pm 8.6)$	$30.7(\pm 10.8)^{\S}$	39.2	274	49.6 ($\pm 9.2)^{\prime \prime}$	$63.1(\pm 11.3)^{\S}$	$20.4(\pm 10.4)^{\S}$	50.9

${ }^{\prime} \mathrm{PAR}=$ population attributable risk. Population attributable risk is a measure to assess the potential contribution of provider recommendation to the observed vaccination level and was calculated using the formula: P ($\mathrm{PR}-1$) $/[\mathrm{P}(\mathrm{PR}-1)+1]$, where P was the prevalence of receiving a provider recommendation for influenza vaccination and PR was the prevalence ratio of vaccination by provider recommendation.
$\mathrm{CI}=$ confidence interval half-width.

Statistically significant difference compared with the estimate for prevalence of provider recommendation from the 2013-14 influenza season.
I/Statistically significant difference compared with the estimate for prevalence of provider recommendation from the 2014-15 influenza season.

Table 3.

Weighted prevalence (\%) of children 6 months-17 years for whom their parent received a provider recommendation for them to receive an influenza vaccination, ${ }^{*}$ and who received influenza vaccination stratified by parental receipt of provider recommendation, by selected sociodemographic characteristics, United States, National Immunization Survey-Influenza (NIS-Flu), 2013-14 through 2015-16 influenza seasons

Characteristics	2013-14 influenza season				2014-15 influenza season				2015-16 influenza season			
	Prevalence of provider recommendati on	Influenza vaccination coverage ${ }^{\dagger}$ by parental receipt of provider recommendation		$\mathbf{P A R}^{\neq}$	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR
		$\begin{aligned} & \text { Recommendati } \\ & \text { on } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { recommendati } \\ \text { on } \end{gathered}$			$\underset{\text { on }}{\text { Recommendati }}$	$\xrightarrow[\substack{\text { No } \\ \text { recommendat } \\ \text { ion }}]{ }$			Recommendati on	$\begin{gathered} \text { No } \\ \text { recommendati } \\ \text { on } \end{gathered}$	
	\% ($\pm 95 \% \mathrm{Cl}^{\text {§ }}$)	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CL})$	\%	\% ($\pm 95 \% \mathrm{CL})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	\% ($\pm 95 \% \mathrm{CI})$	$\%(\pm 95 \%$ CI)	\% ($\pm 95 \% \mathrm{CI})$	\%
Overall	$69.1(\pm 2.2)$	71.1 ($\pm 2.4)$	37.0 ($\pm 4.6)$	38.9	$71.0(\pm 1.2)$	72.4 ($\pm 1.4)$	34.4 (± 2.1)	44.0	$70.3 \pm \pm 1.2)$	72.2 ($\pm 1.5)$	32.1 ($\pm 2.3)$	46.8
Child's age												
a. 6-23 months	$77.3(\pm 4.9){ }^{1 / / d}$	$79.2(\pm 5.7)^{\text {c,d }}$	$34.8(\pm 10.5)^{\text {I/ }}$	49.7	$80.7(\pm 2.5)^{\text {c.d }}$	$80.8(\pm 2.6)^{\text {c,d }}$	$42.5(\pm 7.2)^{\text {d }}$	42.1	$80.0(\pm 2.5)^{\text {b,c, } \mathrm{d}}$	$80.7(\pm 3.2)^{\text {c, }}$,	$37.3(\pm 6.6)^{\text {d }}$	48.2
b. 2-4 years	$78.9(\pm 4.3)^{\text {c,d }}$	$79.8(\pm 4.9)^{\mathrm{c}, \mathrm{d}}$	$43.1(\pm 8.7)^{\text {d }}$	40.2	$77.5(\pm 2.5)^{\mathrm{c}, \mathrm{d}}$	$77.9(\pm 2.6)^{\text {c,d }}$	$43.1(\pm 6.1)^{\text {d }}$	38.5	$75.8(\pm 2.9)^{\text {a,c, }, ~}$	$76.5(\pm 3.2)^{\text {d }}$	$40.0(\pm 6.7)^{\text {d }}$	40.9
c. 5-12 years	$71.6(\pm 3.1)^{\text {b,d }}$	$71.7(\pm 3.2)^{\text {a,b,d }}$	$43.0(\pm 7.4)^{\text {d }}$	32.3	72.3 ($\pm 1.7)^{\text {a,b,d }}$	73.6 ($\pm 2.1)^{\text {a,b,d }}$	$37.4(\pm 3.4)^{\text {d }}$	41.2	$72.2(\pm 1.8)^{\text {a,b,d }}$	$73.5(\pm 2.3)^{\text {a,d }}$	$33.5(\pm 3.5)^{\text {d }}$	46.3
d. 13-17 years	$58.2(\pm 4.4)^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$	60.6 ($\pm 5.2)^{\text {a,b, }}$	$30.3(\pm 7.5)^{\text {b,c }}$	36.8	$62.5(\pm 2.4)^{\text {a,b,c }}$	$63.2(\pm 3.2)^{\text {a,b, }}$	$27.0(\pm 3.3)^{\text {a,b,c }}$	45.6	$61.6(\pm 2.3)^{\text {a,b,c }}$	63.6 ($\pm 3.2)^{\text {a,b,c }}$	27.3 ($\pm 3.7)^{\text {a,b,c }}$	45.0
Child's sex												
a. Male	$69.4(\pm 3.2)$	74.0 ($\pm 3.2)^{\text {b }}$	38.4 ($\pm 6.2)$	39.2	$71.1(\pm 1.6)$	$74.2(\pm 1.8)^{\text {b }}$	35.4 ($\pm 2.9)$	43.8	$69.2(\pm 1.7)$	72.2 ($\pm 1.9)$	33.4 ($\pm 3.3)$	44.6
b. Female	$68.9(\pm 3.1)$	$68.1(\pm 3.5)^{\text {a }}$	35.5 ($\pm 6.9)$	38.8	$70.9(\pm 1.7)$	$70.4(\pm 2.1)^{\text {a }}$	33.3 ($\pm 3.1)$	44.1	$71.5(\pm 1.7)$	72.2 ($\pm 2.3)$	$30.7(\pm 3.0)$	49.1
Child's race/ethnicity ${ }^{* *}$												
a. White, non-Hispanic	68.7 ($\pm 2.4)$	68.6 ($\pm 3.0)^{\text {c,d }}$	33.5 (± 5.1)	41.9	$70.2(\pm 1.5)$	$71.2(\pm 1.8)^{\text {d }}$	$31.6(\pm 2.8)^{\text {c,d }}$	46.8	$69.2(\pm 1.5)$	$71.4(\pm 1.9)^{\text {d }}$	$27.9(\pm 2.4)^{\text {c,d }}$	51.9
b. Black, non-Hispanic	69.0 ($\pm 5.3)$	$65.0(\pm 7.4)^{\mathrm{c}, \mathrm{d}}$	33.6 ($\pm 10.0)$	39.2	$71.0(\pm 3.1)$	$70.0(\pm 4.1)^{\text {d }}$	$33.4(\pm 5.6)^{\text {d }}$	43.8	70.5 ($\pm 3.0)$	$69.8(\pm 3.8)^{\text {d }}$	$32.3 \pm \pm 5.4)^{\text {d }}$	45.0
c. Hispanic	$70.9(\pm 6.3)$	$76.8(\pm 4.9)^{\text {a }{ }^{\text {a }} \text { b }}$	$45.9(\pm 13.2)^{\text {I/ }}$	32.3	$72.5(\pm 2.7)$	$74.1(\pm 3.5)$	$38.5(\pm 5.1)^{\text {a }}$	40.1	$72.9(\pm 3.0)$	73.6 ($\pm 4.1)$	$38.0(\pm 5.9)^{\text {a }}$	40.6
d. Other, non-Hispanic	$67.7(\pm 8.7)$	$81.1(\pm 5.1)^{\text {a,b }}$	$42.5(\pm 16.7)^{\text {q/ }}$	38.1	72.3 ($\pm 3.4)$	$78.7(\pm 3.7)^{\text {a }}$, ${ }^{\text {b }}$	$43.6(\pm 7.0)^{\text {a }}$, ${ }^{\text {b }}$	36.8	70.6 ($\pm 4.4)$	$76.6(\pm 4.4)^{\text {a }}$, ${ }^{\text {b }}$	$43.7(\pm 10.0)^{\text {a,b }}$	34.7
Language survey completed												
a. English	$68.4(\pm 2.4)^{\text {b }}$	$70.0(\pm 2.7)^{\text {b,c }}$	36.7 ($\pm 4.9)$	38.3	$70.3(\pm 1.2)^{\text {b }}$	$71.5(\pm 1.4)^{\text {b }}$	32.6 ($\pm 2.2)^{\text {b,c }}$	45.6	$70.0(\pm 1.3)$	$71.2(\pm 1.6)^{\text {b,c }}$	$29.8(\pm 2.3)^{\text {b,c }}$	49.3
b. Spanish	$77.2(\pm 7.5)^{\text {a,c }}$	$79.0(\pm 5.7)^{\text {a }}$	$38.2(\pm 15.7)^{\text {q/ }}$	45.2	$77.4(\pm 3.8)^{\text {a,c }}$	$79.5(\pm 5.4)^{\text {a }}$	$49.7(\pm 8.5)^{\text {a }}$	31.7	$75.1 \pm 4.6)$	$80.7(\pm 5.0)^{\text {a }}$	$57.1(\pm 10.2)^{T /, a}$	23.7

ฉd!ıอsnuew ıOчın \forall

Characteristics	2013-14 influenza season				2014-15 influenza season				2015-16 influenza season			
	Prevalence of provider recommendati on	Influenza vaccination coverage ${ }^{\dagger}$ by parental receipt of provider recommendation		$\mathbf{P A R}^{\ddagger}$	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR
		$\underset{\text { on }}{\text { Recommendati }}$	$\xrightarrow[\substack{\text { No } \\ \text { recommendati } \\ \text { on }}]{ }$			$\underset{\text { on }}{\text { Recommendati }}$	$\stackrel{\text { No }}{\substack{\text { recommendat } \\ \text { ion }}}$			$\underset{\text { on }}{\text { Recommendati }}$	$\stackrel{\text { No }}{\substack{\text { recommendati } \\ \text { on }}}$	
	$\%\left(\pm 95 \% \mathrm{CI}^{\text {§ }}\right.$)	\% ($\pm 95 \% \mathrm{Cl})$	\% ($\pm 95 \% \mathrm{CI})$	\%	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%
c. Other language	$63.3(\pm 11.2)^{\text {b }}$	$84.5(\pm 10.4)^{T / \mathrm{a}}$	$52.4(\pm 17.4)^{\text {g/ }}$	27.9	$67.6(\pm 8.9)^{\text {b }}$	$72.5(\pm 14.6)^{\text {g/ }}$	$60.4(\pm 14.1)^{T / \mathrm{aa}}$	11.9	64.2 ($\pm 10.0)$	$87.4(\pm 9.5)^{\mathrm{a}}$	$53.2(\pm 14.7)^{T / 4}$	29.2
Mother's education												
a. <High school	$68.2(\pm 7.3)$	$75.5(\pm 6.5)^{\text {b, }}$	$49.2(\pm 15.0)^{\text {I/.c }}$	26.7	$71.2(\pm 3.8)^{\text {d }}$	$75.1(\pm 4.9)^{\text {b,c }}$	$41.8(\pm 7.6)^{\text {c }}$	36.2	$71.0(\pm 4.2)$	$78.0(\pm 4.3)^{\text {b,c }}$	$45.1(\pm 8.2)^{\text {b,c,d }}$	34.1
b. High school or equivalent	$63.7(\pm 5.9)$	$63.3(\pm 6.2)^{\text {a,d }}$	$33.1(\pm 12.8)^{\text {g/ }}$	36.8	$67.6(\pm 3.1)^{\text {d }}$	$68.1(\pm 4.2)^{\text {a,d }}$	35.2 ($\pm 5.0)$	38.7	$66.9(\pm 3.0)^{\text {d }}$	$71.3(\pm 4.0)^{\mathrm{a}, \mathrm{c}}$	$30.7(\pm 4.7)^{\text {a }}$	46.9
c. Some college	$68.7(\pm 3.5)$	$66.2(\pm 4.6)^{\text {a,d }}$	28.5 ($\pm 4.9)^{\text {a,d }}$	47.6	$67.7(\pm 2.4)^{\text {d }}$	$66.4(\pm 2.9)^{\text {a,d }}$	$30.8(\pm 4.0)^{\mathrm{a}}$	43.9	$66.3(\pm 2.6)^{\text {d }}$	$65.7(\pm 3.4)^{\text {a,b,d }}$	$27.2(\pm 3.8)^{\text {a }}$	48.4
d. \times College degree	72.3 ($\pm 3.4)$	$76.3(\pm 3.0)^{\text {b,c }}$	$40.4(\pm 7.4)^{\text {c }}$	39.1	$75.7(\pm 1.6)^{\text {a,b,c }}$	$76.4(\pm 1.8)^{\text {b,c }}$	35.2 (± 3.4)	47.0	$73.9(\pm 1.7)^{\text {b,c }}$	$74.5(\pm 2.2)^{\text {c }}$	$31.6(\pm 3.8)^{\text {a }}$	50.1
Poverty/annual household income ${ }^{\dagger / \dagger}$												
a. Above poverty (>\$75,000)	$73.7(\pm 3.2)^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$77.2(\pm 3.2)^{\text {b }}$	38.8 ($\pm 6.7)$	42.2	76.0 ($\pm 1.7)^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$75.4(\pm 2.0)^{\text {b }}$	34.4 ($\pm 3.7)$	47.5	$72.5(\pm 1.9)^{\text {米 }}$	74.3 ($\pm 2.1)^{\text {b }}$	31.8 ($\pm 4.1)$	49.2
b. Above poverty ($\$ \$ 75,000$)	$68.2(\pm 3.6)^{\text {a }}$	$64.1(\pm 4.5)^{\text {a,c }}$	31.2 ($\pm 6.9)$	41.8	$68.5(\pm 2.1)^{\text {a }}$	$68.4(\pm 2.6)^{\text {a,d }}$	$32.7(\pm 3.5)^{\text {c }}$	42.8	69.3 ($\pm 2.2)$	$67.2(\pm 3.2)^{\text {a,c }}$	28.3 ($\pm 3.3)^{\text {c,d }}$	48.8
c. Below poverty	$65.4(\pm 5.9)^{\text {a }}$	$71.3(\pm 5.4)^{\text {b }}$	$45.3(\pm 12.3)^{\text {I/ }}$	27.3	$69.6(\pm 2.8)^{\text {a,d }}$	71.4 ($\pm 3.6)$	40.0 ($\pm 5.3)^{\text {b,d }}$	35.3	$68.4(\pm 3.0)$	76.6 ($\pm 3.2)^{\text {b }}$	$37.1(\pm 5.7)^{\text {b }}$	42.1
d. Unknown	$64.5(\pm 6.2)^{\text {a }}$	70.5 ($\pm 5.9)$	31.8 (± 8.9)	44.0	$64.7(\pm 3.7)^{\text {a,c }}$	$74.4(\pm 4.5)^{\text {b }}$	29.4 ($\pm 5.3)^{\text {c }}$	49.8	$69.2(\pm 3.4)$	71.4 ($\pm 4.4)$	$34.9(\pm 5.6)^{\text {b }}$	42.0
Number of children in household												
a. 1	$62.2(\pm 3.9)^{\text {b,c }}$	71.4 ($\pm 4.2)$	32.2 ($\pm 6.5)$	43.1	$67.9(\pm 1.9)^{\text {b, } \mathcal{S} \xi}$	72.0 ($\pm 2.4)$	35.1 (± 3.1)	41.7	$66.2(\pm 2.2)^{\text {b,c }}$	72.8 ($\pm 3.0)$	$31.0(\pm 3.9)^{\text {c }}$	47.2
b. 2-3	$71.5(\pm 3.0)^{\mathrm{a}}$	71.7 ($\pm 3.2)$	39.1 ($\pm 6.8)$	37.3	$73.0(\pm 1.6)^{\text {a,c }}$	72.2 ($\pm 1.9)$	$34.2(\pm 3.0)$	44.8	$71.5(\pm 1.6)^{\text {a }}$	72.9 ($\pm 1.8)$	$34.7(\pm 3.1)^{\text {c }}$	44.0
c. 24	$71.4(\pm 5.5)^{\text {a }}$	$67.4(\pm 7.0)$	$39.5(\pm 10.2)^{\text {g/ }}$	33.5	$67.4(\pm 4.0)^{\text {b }}$	73.7 ($\pm 4.4)$	33.4 ($\pm 7.2)$	44.9		67.6 (± 5.5)	$21.6(\pm 5.2)^{\text {a,b }}$	61.1
Urban-rural residence												
a. Urban (MSA, //I/ principal city)	$68.4(\pm 4.0)$	73.3 ($\pm 4.0)$	34.3 ($\pm 7.4)$	43.7	$73.1 \pm 2.3)^{\text {c, }}$, $\xi \mathcal{S}$	$75.6(\pm 2.7)^{\text {b,c }}$	35.4 ($\pm 4.2)$	45.4	$73.9(\pm 2.2)^{\text {b, , }, \mathcal{S}}$	$77.5(\pm 2.5)^{\text {b, }}$	38.0 ($\pm 4.7)^{\text {b,c }}$	43.4
b. Suburban (MSA, not principal city)	$70.7(\pm 3.1)$	70.1 ($\pm 3.5)$	$41.4(\pm 6.6)^{\text {c }}$	32.9	$72.0(\pm 1.5)^{\text {c }}$	$71.9(\pm 1.9)^{\text {a,c }}$	35.3 ($\pm 2.8)$	42.7	$70.4(\pm 1.7)^{\text {a,c }}$	$70.4(\pm 2.1)^{\text {a }}$	$30.9(\pm 3.1)^{\text {a }}$	47.4
c. Rural (non-MSA)	63.8 ($\pm 4.9)$	71.8 ($\pm 4.3)$	$25.7(\pm 5.9)^{\text {b }}$	53.4	$62.3(\pm 3.3)^{\text {a,b }}$	$67.8(\pm 3.3)^{\text {a,b }}$	30.0 ($\pm 5.2)$	44.0	$63.7(\pm 2.9)^{\text {a,b }}$	$69.8(\pm 3.8)^{\text {a }}$	28.7 ($\pm 4.2)^{\text {a }}$	47.7
Region of residence												

Characteristics	2013-14 influenza season				2014-15 influenza season				2015-16 influenza season			
	Prevalence of provider recommendati on	Influenza vaccination coverage ${ }^{\dagger}$ by parental receipt of provider recommendation		PAR ${ }^{\text {\# }}$	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR	Prevalence of provider recommendati on	Influenza vaccination coverage by parental receipt of provider recommendation		PAR
		$\begin{aligned} & \text { Recommendati } \\ & \text { on } \end{aligned}$	$\xrightarrow[\substack{\text { No } \\ \text { recommendati } \\ \text { on }}]{ }$			Recommendati on	$\stackrel{\text { No }}{\substack{\text { recommendat } \\ \text { ion }}}$			Recommendati on	$\xrightarrow[\substack{\text { No } \\ \text { recommendati } \\ \text { on }}]{ }$	
	\% ($\pm 95 \% \mathrm{CI}^{\text {§ }}$)	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \%$ CI)	\%	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\% ($\pm 95 \% \mathrm{CI})$	\%
a. Northeast	$73.3(\pm 4.2)^{\text {b, },}$	$75.9(\pm 3.8)^{\text {b }}$	$41.8(\pm 10.7)^{q / \mathrm{b}}$	37.4	76.6 ($\pm 2.5)^{\text {b,c, }, \mathrm{d}}$	$75.1(\pm 2.9)^{\text {b }}$	36.3 (± 5.4)	45.0	$76.0(\pm 2.2)^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	$76.5(\pm 2.7)^{\text {b, , , d }}$	35.3 ($\pm 4.6)^{\text {b }}$	47.0
b. Midwest	$67.3(\pm 4.3)^{\text {a }}$	$65.4(\pm 5.4)^{\text {a }}$	28.4 ($\pm 6.1)^{\text {a,c }}$	46.7	$69.8(\pm 2.1)^{\text {a }}$	$69.4(\pm 2.5)^{\text {a,c }}$	30.6 ($\pm 3.8)^{\text {c }}$	47.0	$70.7(\pm 2.0)^{\text {a }}$	$72.1(\pm 2.4)^{\text {a }}$	$29.0(\pm 3.6)^{\text {a,c }}$	51.2
c. South	$65.6(\pm 3.8)^{\text {a,d }}$	71.3 (± 3.7)	$41.8(\pm 8.3)^{\text {b }}$	31.6	$69.2(\pm 1.7)^{\text {a }}$	73.6 ($\pm 2.0)^{\text {b }}$	$36.0(\pm 3.1)^{\text {b }}$	42.0	$68.4(\pm 1.7)^{\text {a }}$	$71.0(\pm 2.3)^{\text {a }}$	$34.2(\pm 3.0)^{\text {b }}$	42.4
d. West	$73.5(\pm 4.8)^{\text {c }}$	72.0 ($\pm 6.0)$	32.9 ($\pm 7.3)$	46.6	$70.9(\pm 3.2)^{\text {a }}$	$71.0(\pm 3.9)$	34.1 (± 5.7)	43.4	$69.0(\pm 3.7)^{\text {a }}$	$70.8(\pm 4.8)^{\text {a }}$	29.6 (± 6.8)	49.0

* Children who did not have a provider visit between July land the date of the interview during an influenza season were excluded.
${ }^{\dagger}$ Influenza vaccination coverage was calculated by the Kaplan Meier method.
${ }^{*} \mathrm{PAR}=$ population attributable risk. Population attributable risk is a measure to assess the potential contribution of provider recommendation to the observed vaccination level and was calculated using the formula: $\mathrm{P}(\mathrm{PR}-1) /[\mathrm{P}$ ($\left.\mathrm{PR}-1)+1\right]$, where P was the prevalence of receiving a provider recommendation for influenza vaccination and PR was the prevalence ratio of vaccination by provider recommendation.
2013-14, the The presence or absence of superscripted letters denotes whether that estimate was statistically significantly different at $\mathrm{P}<0.05$ from another row, and denotes which row it differed from (a, b, c , or d), based on pair-wise compar
percentage of children $6-23$ months (a) who received a provider recommendation (77.3%) was statistically significantly different from the percentage of children $13-17$ years (d) who received a provider recommendation (58.2\%). IEstimates might not be reliable because confidence interval half-width is >10.
 Hawaiian or other Pacific Islander, other, or multiple (i.e. selected more than one race category) races.
${ }^{\dagger}$ Poverty level was defined based on the reported number of people living in the household and annual household income, according to the U.S. Census poverty thresholds (https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty
hresholds.html).
${ }^{*}$ Statistically significant difference compared with the estimate for prevalence of provider recommendation from the 2014-15 influenza season.
${ }^{\xi}$ Statistically significant difference compared with the estimate for prevalence of provider recommendation from the 2013-14 influenza season.
IIII MSA = metropolitan statistical area. MSA was based on parent/guardian respondent-reported city, state, county, and zip code of residence using the (https://www.census.gov/programs-surveys/metro-micro.html) MSA definitions file.
Table 4.
Association of parental receipt of a provider recommendation for their child to receive influenza vaccination with sociodemographic characteristics among children 6 months-17 years who had a provider visit since July 1st during the influenza season, United States, National Immunization SurveyInfluenza (NIS-Flu), 2013-14 through 2015-16 influenza seasons

Characteristics	2013-14 influenza season		2014-15 influenza season		2015-16 influenza season	
	$\mathrm{APR}^{*} \pm 95 \% \mathrm{CI}^{\dagger}$	$\mathbf{A P}^{\ddagger}$ \%	$\mathrm{APR} \pm 95 \% \mathrm{CI}$	AP \%	APR $\pm 95 \%$ CI	AP \%

$1.37(1.25-1.51) \quad 79.3(74.6-83.3) \quad 1.28(1.22-1.34) \quad 81.3(78.7-83.6) \quad 1.31(1.25-1.37) \quad 80.8(78.3-83.1)$ $\begin{array}{llllll}1.37(1.25-1.49) & 78.9(74.9-82.5) & 1.22(1.17-1.29) & 78.0(75.4-80.4) & 1.23(1.16-1.12) & 75.7(72.6-78.6)\end{array}$ $1.24(1.14-1.34) \quad 71.5(68.5-74.2) \quad 1.13(1.08-1.18) \quad 72.2(70.5-73.9) \quad 1.17(1.11-1.22) \quad 72.0(70.2-73.8)$ Referent $57.8(53.3-62.2) \quad$ Referent $\quad 63.7(61.3-66.1) \quad$ Referent $61.8(59.4-64.2)$
69.3 (67.5-71.0) Referent $\quad 71.5$ (69.8-73.2)
Referent $\quad 69.1$ (67.4-70.8)

 $0.99(0.89-1.10) \quad 68.2(60.7-74.8) \quad 1.03(0.98-1.09) \quad 73.2(69.5-76.7) \quad 1.02(0.95-1.09) \quad 70.5(65.8-74.9)$ 69.9 (68.5-71.4)
 $0.96(0.79-1.17) \quad 64.7(51.5-76.0) \quad 0.97(0.83-1.13) \quad 68.0(56.6-77.5) \quad 0.97(0.81-1.15) \quad 67.8(55.2-78.2)$ 70.1 (65.6-74.4)

$\begin{array}{llllll}1.06(0.94-1.20) & 71.0(67.3-74.3) & 1.05(0.98-1.13) & 74.4(72.5-76.2) & 1.04(0.97-1.12) & 73.3(71.4-75.1)\end{array}$
1.19 (1.07-1.32) $\quad 73.9$ (70.8-76.7) $\quad \mathbf{1 . 0 9 (1 . 0 3 - 1 . 1 5)} \quad 75.5(73.6-77.4) \quad 1.06(1.00-1.13) \quad 72.0(69.9-73.9)$ Poverty/annual household income $/ /$ Above poverty (>\$75,000)

Characteristics	2013-14 influenza season		2014-15 influenza season		2015-16 influenza season	
	$\mathrm{APR}^{*} \pm 95 \% \mathrm{CI}^{\dagger}$	AP ${ }^{\text {\# }}$ \%	APR $\pm 95 \% \mathrm{CI}$	AP \%	APR $\pm 95 \%$ CI	AP \%
Above poverty ($\$ \$ 75,000$)	1.12 (1.01-1.24)	69.4 (65.9-72.7)	1.00 (0.95-1.06)	69.7 (67.5-71.7)	1.04 (0.98-1.10)	70.4 (68.2-72.6)
Below poverty	Referent	62.1 (55.9-67.9)	Referent	69.4 (66.1-72.5)	Referent	67.6 (64.2-70.8)
Unknown	1.06 (0.93-1.21)	66.0 (59.7-71.7)	0.97 (0.89-1.04)	67.0 (62.7-71.0)	1.03 (0.95-1.10)	69.4 (65.4-73.1)
Number of children in household						
1	Referent	62.5 (58.9-66.0)	Referent	69.0 (67.2-70.8)	Referent	66.8 (64.5-69.0)
2-3	1.14 (1.07-1.21)	71.3 (68.3-74.0)	1.06 (1.02-1.10)	73.1 (71.5-74.7)	1.06 (1.02-1.11)	71.1 (69.4-72.7)
24	1.17 (1.07-1.27)	72.9 (67.8-77.5)	1.00 (0.94-1.07)	69.2 (65.1-73.0)	1.12 (1.06-1.19)	74.8 (71.0-78.2)
Urban-rural residence						
Urban (MSA, ${ }^{\text {I/ }}$ principal city)	1.00 (0.91-1.08)	67.7 (63.7-71.4)	1.11 (1.05-1.18)	73.3 (70.9-75.5)	1.12 (1.06-1.18)	73.3 (71.0-75.5)
Suburban (MSA, not principal city)	1.03 (0.96-1.11)	70.2 (67.2-73.1)	1.10 (1.04-1.16)	72.2 (70.6-73.7)	1.07 (1.02-1.13)	70.3 (68.6-72.0)
Rural (non-MSA)	Referent	68.0 (63.4-72.3)	Referent	65.8 (62.4-69.0)	Referent	65.6 (62.5-68.6)
Region of residence						
Northeast	1.10 (1.02-1.18)	73.1 (68.8-77.0)	1.09 (1.05-1.14)	76.7 (74.1-79.1)	1.11 (1.07-1.16)	75.9 (73.6-78.1)
Midwest	1.02 (0.95-1.10)	68.0 (64.2-71.7)	1.02 (0.98-1.06)	71.4 (69.2-73.4)	1.05 (1.01-1.09)	71.8 (69.7-73.8)
South	Referent	66.5 (62.9-70.0)	Referent	70.1 (68.3-71.9)	Referent	68.1 (66.3-69.9)
West	1.08 (1.00-1.17)	72.0 (67.7-75.9)	1.00 (0.95-1.05)	70.3 (67.1-73.3)	1.01 (0.95-1.07)	68.7 (64.9-72.2)

[^1] ${ }^{\circ} \mathrm{CI}=$ confidence interval. $\not{ }^{\mathrm{AP}}=$ adjusted prevalence.
$\xi_{\text {Race/ethnicity is based on parental report. Children of Hispanic ethnicity may be of any race. Children categorized as white, black, or other were identified as non-Hispanic. The other race category }}$ included children of reported Asian, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, other, or multiple (i.e. selected more than one race category) races.
/Poverty level was defined based on the reported number of people living in the household and annual household income, according to the U.S. Census poverty thresholds (https://www.census.gov/data/ tables/time-series/demo/income-poverty/historical-poverty-thresholds.html).
${ }^{I}$ MSA = metropolitan statistical area. MSA was based on parent/guardian respondent-reported city, state, county, and zip code of residence using the (https://www.census.gov/programs-surveys/metromicro.html) MSA definitions file.
Table 5. controlling for sociodemographic characteristics,* among children 6 months- 17 years who had a provider visit since July 1st during the influenza season, United States, National Immunization Survey-Influenza (NIS-Flu), 2013-14 through 2015-16 influenza seasons

Characteristics	2013-14		2014-15		2015-16	
	$\mathrm{APR}^{\dagger} \pm 95 \% \mathrm{CI}^{*}$	$\mathbf{A P}^{\S} \%$	$\mathbf{A P R} \pm 95 \% \mathrm{CI}$	AP \%	$\mathbf{A P R} \pm 95 \% \mathrm{CI}$	AP \%

Provider recommendation						
Yes	$\mathbf{1 . 8 0 (1 . 6 1 - 2 . 0 1)}$	$70.7(68.4-73.0)$	$\mathbf{1 . 9 1}(\mathbf{1 . 7 9 - 2 . 0 4)}$	$71.2(69.8-72.7)$	$\mathbf{2 . 1 2 (1 . 9 8 - 2 . 2 8)}$	$71.5(70.0-73.1)$
No	Referent	$39.3(35.0-43.8)$	Referent	$37.3(35.0-39.6)$	Referent	$33.7(31.4-36.0)$

*The model included the following sociodemographic variables: child's age, child's sex, child's race/ethnicity, language survey completed, mother's education, poverty/annual household income, number of children in household, urban/rural residence, and region of residence.
${ }^{\dagger}$ APR $=$ adjusted prevalence ratio. Estimates in bold are statistically significantly different from the referent $(\mathrm{P}<0.05)$.
${ }^{*} \mathrm{CI}=$ confidence interval.
$\xi_{\text {AP }}=$ adjusted prevalence.

[^0]: Address correspondence to: Katherine E. Kahn, MPH, Centers for Disease Control and Prevention (CDC), National Center for Immunization and Respiratory Diseases (NCIRD), 1600 Clifton Road, NE; Mail Stop A-19, Atlanta, GA 30329-4027, xdo9@cdc.gov, Phone: 404 718-8639.
 Author's contribution
 KEK conceived the study, with input from TAS and CBB, carried out the analysis, drafted the initial manuscript, revised the manuscript, and approved the final manuscript as submitted. TAS advised on the data analysis, participated in data interpretation, critically reviewed and revised the manuscript, and approved the final manuscript as submitted. YZ reviewed the data analysis, critically reviewed and revised the manuscript, and approved the final manuscript as submitted. CBB critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

 Disclosure
 The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

 Declarations of interest: none

[^1]:

